Нейрокомпьютерный интерфейс и спинномозговой имплантат позволили парализованному человеку двигаться более естественно.

Доброволец, чьи ноги были парализованы после несчастного случая одиннадцать лет назад, тренируется согласовывать работу нейроинтерфейса и спинномозгового имплантата. (Фото: Ecole Polytechnique Fédérale de Lausanne)
Открыть в полном размере

Нет нужды лишний раз объяснять, почему при травмах позвоночника возникает паралич: нервные пути спинного мозга оказываются повреждены, и головной мозг теряет связь с мышцами, которые находятся ниже места травмы. Можно ли как-то восстановить подвижность тела? С одной стороны, есть масса исследовательских попыток напрямую зарастить повреждение в спинном мозге, простимулировать рост нервов, чтобы пучки нервов до места травмы и после нашли друг друга, чтобы нейронная спинномозговая «электропроводка» снова стала непрерывной.

С другой стороны, можно пойти в обход, используя инфраструктуру нейронных сетей спинного мозга. Потому что спинной мозг – это не просто шлейф проводов, передающий сообщения между центрами головного мозга и подведомственными им органами. Если говорить о скелетных мышцах, то спинномозговые нейроны образуют довольно сложные специализированные сети, ответственные за сохранение равновесия, координацию при ходьбе, контролирующие скорость и направление движения и т. д. Получая информацию от мышц и кожи, нейронные сети спинного мозга могут вносить поправки в двигательную программу, корректируя её в зависимости от ощущений. Способность человека или животного управлять своими движениями зависит не только от контактов спинномозговых нейронов с центрами головного мозга, но и от целостности таких вот сетей в самом спинном мозге. Стимулируя двигательные сети спинного мозга, можно научить его управлять ногами, которые после травмы остались парализованными.

Много лет назад сотрудники Федеральной политехнической школы Лозанны вместе с коллегами из других научных центров начали экспериментировать с такой стимуляцией. Мы неоднократно писали об этих экспериментах. Когда мы говорим «стимуляция спинного мозга», нужно помнить, насколько непросто простимулировать спинномозговые нейроны так, чтобы получить правильную последовательность движений. Если мы представим, как двигается наша нога, то быстро поймём, что активность нейронов (и групп нейронов), управляющих движением, будет довольно сложной: они будут включаться по очереди, постоянно «прислушиваясь» к тому, что во время выполняемого движения происходит с ногой, с её мышцами. Стимулировать спинной мозг будет специальный имплантат, который нужно снабдить обратной связью: его электроды должны включаться и выключаться в соответствии с тем, как движется нога. А для этого нужно учитывать не только движение ноги самой по себе, но и положение тела в пространстве. Можно представить, насколько сложными должны быть алгоритмы, которые рассчитывают импульсы, подаваемые имплантатом на спинной мозг.

После того, как «крысиные» эксперименты со спинномозговой стимуляцией прошли успешно, этот метод использовали с тремя добровольцами, которые когда-то получили травмы позвоночника и последние годы провели в инвалидных колясках. Спустя пять месяцев тренировок со стимулятором спинного мозга все трое уже ходили на собственных ногах. Но, как легко понять, чтобы начать ходить, стимулятор нужно сначала запустить. Речь не обязательно о кнопке на пульте управления. Например, один из добровольцев, несмотря на травму и паралич, мог определённым образом двигать коленями – это движение и запускало стимулятор, посылая ему импульсы от соответствующих мышц. Кроме того, шаги со спинномозговой стимуляцией получались как бы механические, роботообразные, что понятно – мышцами управляла не сознательная воля, а автономные нейронные сети спинного мозга с помощью стимулятора; отчасти это было похоже на то, как кукловод управляет марионеткой. Наконец, шагать так можно было только по ровной поверхности; перешагнуть через какое-нибудь препятствие или подняться по лестнице уже было нельзя.

В новой статье, опубликованной в Nature, исследователи пишут, что им удалось сделать «стимуляторные» движения более естественными, более произвольными, так что человек, например, теперь мог подняться по ступенькам. Ходьбу сделали более естественной, поручив контроль над стимулирующим имплантатом головному мозгу. Правда, в головной мозг тоже пришлось вживить имплантат, точнее, два имплантата с 64 электродами, которые считывали импульсы из двигательных зон коры. Сигналы беспроводным образом передавались на гарнитуру, прикреплённую к голове, с неё – на лэптоп в рюкзаке за спиной. Лэптоп расшифровывал сигнал из головного мозга, чтобы стало понятно, о каком движении он думал. Дальше уже спинномозговому имплантату отправлялась информация, на какие мышцы нужно подействовать, чтобы совершить запланированное движение. Считыванием сигналов из мозга и перевод их в понятные алгоритмические команды занимаются нейрокомпьютерные интерфейсы. Здесь нейрокомпьютерный интерфейс соединили со спинномозговым имплантатом, и вместе они продублировали исходное спинномозговое соединение, повреждённое травмой.

На то, чтобы освоиться с новой системой, понадобилось сорок тренировок, после чего доброволец с двумя имплантатами начал двигаться более естественно и в произвольном ритме. Теперь он мог, например, садиться в машину и выходить из неё, и даже, как было сказано, подниматься и спускаться по лестнице. Благодаря тому, что электростимуляция спинного мозга теперь была под контролем (пусть и опосредованным) мозга головного, движения в щиколотках, коленях и тазобедренных суставах стали более точными (хотя нельзя сказать, что человек стал двигаться абсолютно свободно – движения даются ему всё-таки с определённым усилием). Травма не полностью разрушила связи в спинном мозге, какие-то из них остались, и, по-видимому, благодаря системе с двумя имплантатами эти оставшиеся связи усилились – головной мозг стал лучше чувствовать парализованную часть тела.

Разумеется, нужно помнить, что систему с двумя имплантатами испытали пока только на одном-единственном человеке, и что  в мозг хирургическим путём вживили набор из нескольких десятков электродов – а такие операции не всегда проходят абсолютно удачно. Тем не менее, даже в таком единичном варианте видно, что подход с нейроинтерфейсом и спинномозговой стимуляцией как таковой работает. Возможно, в перспективе «метод двух имплантатов» станет более безопасным и более простым для использования в разных медицинских центрах – если только его в принципе не отодвинет в сторону какая-то другая биомедицинская технология.